ALGEBRA QUALIFYING EXAM FALL 2018

Exercise 1. Suppose p is a prime. Show that the Galois group of $x^5 - 1 2 F_p[x]$ depends only on $p \pmod{5}$, and compute it for each congruence class of $p \pmod{5}$.

Exercise 2. Let R be a Dedekind domain with eld of fractions K Show that for any two proper fractional ideals I;J there are $f: \mathcal{L}(K) \to \mathcal{L}(K)$ with $f: \mathcal{L}(K) \to \mathcal{L}(K)$ and $f: \mathcal{L}(K) \to \mathcal{L}(K)$ there are $f: \mathcal{L}(K) \to \mathcal{L}(K)$ with $f: \mathcal{L}(K) \to \mathcal{L}(K)$ integral and $f: \mathcal{L}(K) \to \mathcal{L}(K)$ and $f: \mathcal{L}(K) \to \mathcal{L}(K)$ integral $f: \mathcal{L}(K) \to \mathcal{L}(K)$ and $f: \mathcal{L}(K) \to \mathcal{L}(K)$ integral $f: \mathcal{L}(K) \to \mathcal{L}(K)$ are $f: \mathcal{L}(K) \to \mathcal{L}(K)$ and $f: \mathcal{L}(K) \to \mathcal{L}(K)$ and $f: \mathcal{L}(K) \to \mathcal{L}(K)$ are $f: \mathcal{L}(K) \to \mathcal{L}(K)$ and $f: \mathcal{L}(K) \to \mathcal{L}(K)$ integral $f: \mathcal{L}(K) \to \mathcal{L}(K)$ are $f: \mathcal{L}(K) \to \mathcal{L}(K)$ and $f: \mathcal{L}(K) \to \mathcal{L}(K)$ are $f: \mathcal{L}(K) \to \mathcal{L}(K)$ and $f: \mathcal{L}(K) \to \mathcal{L}(K)$ are $f: \mathcal{L}(K) \to \mathcal{L}(K)$ and $f: \mathcal{L}(K) \to \mathcal{L}(K)$ are $f: \mathcal{L}(K) \to \mathcal{L}(K)$ and $f: \mathcal{L}(K) \to \mathcal{L}(K)$ are $f: \mathcal{L}(K) \to \mathcal{L}(K)$ and $f: \mathcal{L}(K) \to \mathcal{L}(K)$ are $f: \mathcal{L}(K) \to \mathcal{L}(K)$ and $f: \mathcal{L}(K) \to \mathcal{L}(K)$ are $f: \mathcal{L}(K) \to \mathcal{L}(K)$ and $f: \mathcal{L}(K) \to \mathcal{L}(K)$ are $f: \mathcal{L}(K) \to \mathcal{L}(K)$ and $f: \mathcal{L}(K) \to \mathcal{L}(K)$ are $f: \mathcal{L}(K) \to \mathcal{L}(K)$ and $f: \mathcal{L}(K) \to \mathcal{L}(K)$ are $f: \mathcal{L}(K) \to \mathcal{L}(K)$ are $f: \mathcal{L}(K) \to \mathcal{L}(K)$ and $f: \mathcal{L}(K) \to \mathcal{L}(K)$ are $f: \mathcal{L}(K) \to \mathcal{L}(K)$ and $f: \mathcal{L}(K) \to \mathcal{L}(K)$ are $f: \mathcal{L}(K) \to \mathcal{L}(K)$ and $f: \mathcal{L}(K) \to \mathcal{L}(K)$ are $f: \mathcal{L}(K) \to \mathcal{L}(K)$ and $f: \mathcal{L}(K) \to \mathcal{L}(K)$ are $f: \mathcal{L}(K) \to \mathcal{L}(K)$ and $f: \mathcal{L}(K) \to \mathcal{L}(K)$ and $f: \mathcal{L}(K) \to \mathcal{L}(K)$ are $f: \mathcal{L}(K) \to \mathcal{L}(K)$ and $f: \mathcal{L}(K) \to \mathcal{L}(K)$ are $f: \mathcal{L}(K) \to \mathcal{L}(K)$ and $f: \mathcal{L}(K) \to \mathcal{L}(K)$ and $f: \mathcal{L}(K) \to \mathcal{L}(K)$ are $f: \mathcal{L}(K) \to \mathcal{L}(K)$ and $f: \mathcal{L}(K) \to \mathcal{L}(K)$ are $f: \mathcal{L}(K) \to \mathcal{L}(K)$ and $f: \mathcal{L}(K) \to \mathcal{L}(K)$ are $f: \mathcal{L}(K) \to \mathcal{L}(K)$ and $f: \mathcal{L}(K) \to \mathcal{L}(K)$ are $f: \mathcal{L}(K) \to \mathcal{L}(K)$ and $f: \mathcal{L}(K) \to \mathcal{L}(K)$ and $f: \mathcal{L}(K) \to \mathcal{L}(K)$ are $f: \mathcal{L}(K) \to \mathcal{L}(K)$ and $f: \mathcal{L}(K) \to \mathcal{L}(K)$ and $f: \mathcal{L}(K) \to \mathcal{L}(K)$ are $f: \mathcal{L}(K) \to \mathcal{L}(K)$ and $f: \mathcal{L}(K) \to \mathcal{L}(K)$ are $f: \mathcal{L}(K) \to \mathcal{L}(K)$ and $f: \mathcal{L}(K) \to \mathcal{L}(K)$ are $f: \mathcal{L}(K) \to \mathcal{L}(K)$ and $f: \mathcal{L}(K) \to \mathcal{L}(K)$ and $f: \mathcal{L}(K) \to \mathcal{L}$

Exercise 3. Suppose that R is a Noetherian ring and \mathfrak{p} R is a prime ideal such that $R_{\mathfrak{p}}$ is an integral domain. Show that there is an $f 2 R n \mathfrak{p}$ such that R_f is an integral domain where R_f