ALGEBRA QUALIFYING EXAM { SPRING 2017

Problem 1. Prove that an Artinian ring has nitely many maximal ideals.

Problem 2. Let \mathbb{F} be a nite eld with $/\mathbb{F}/=q$. Consider the subgroup

$$G = \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} j a 2 \mathbb{F} ; b 2 \mathbb{F} < GL_2(\mathbb{F}):$$

Show that for any prime p dividing q 1, the number of Sylow p-subgroups of G is q.

Problem 3. Let R be a UFD and a;b be coprime elements in R. For all i 0, compute $\operatorname{Tor}_{i}^{R=(ab)}(R=(a);R=(b))$:

Problem 4. Let F be a eld, and D be an integral domain containing F. Suppose D is nite dimensional as a vector space over F. For each $x \ge D$, de ne the F-linear transformation T_x : $D \mid D$ by $T_x(y) = xy$.

.;r(ac)onPratimienthat F